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While there is currently much research activity on catchment classification, there is no agreement on rel-
evant measures of catchment similarity. Here we investigate whether the use of different catchment
characteristics as similarity measures leads to convergent catchment classification results. We fed a clus-
tering algorithm called affinity propagation (AP) with different combinations of catchment forcing, form
and function indicators collected over 36 Scottish sites (0.44–1712.10 km2). The AP algorithm was effec-
tive in determining the optimal number of groups needed to capture the most variability in each combi-
nation of variables. Catchment groupings obtained using physical properties only did not match those
obtained using flow indices, mean transit times or storage estimates. The lack of correlation between
flow-derived indicators and physical indicators was a surprising result. The combination of data which
best approximated the interactions between catchment structural and functional properties included
only topographic characteristics, soil properties and mean transit time estimates.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction of catchment response to specific configurations of climate and
Extensive hydrological studies conducted at experimental sites
around the world have yielded a large amount of data often show-
ing the idiosyncrasies of individual catchments (e.g., [1]). These
data reflect highly complex hydrologic behaviours, hence the diffi-
culty to come up with ‘‘concise, easily understood explanations of dif-
ferent basin behaviours’’ [2, p. 2]. Uniqueness of place [3] tends to
limit our ability to create generalizable hypotheses about the over-
all functioning of hydrological systems, an issue which has been
described as ‘‘one of the most vexing’’ in hydrology [4, p. 878]. Sev-
eral authors have however suggested that organizational patterns
might be discernable in the topography, soil, geology and vegeta-
tion of catchments [5,6,1]. This argument ensues from earlier
bodies of work such as those on the catena concept [7], the hierar-
chy of stream tributaries [8] or the topographic wetness index [9].
While catenas are described as grouping of soils which are ‘‘linked
in their occurrence by conditions of topography and are repeated in
the same relationships to each other wherever the same conditions
are met with’’ [7, p. 197], stream orders are used for the compara-
tive analysis of drainage basins, and topographic index curves are
often built to assess whether two catchments show a similar distri-
bution of wetness. In all, the potential for relating specific aspects
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landscape properties has generated some excitement in the field,
and we believe that one of the most tangible manifestations of
such excitement is the multiplication of catchment classification
and regionalization studies (e.g. [10–15]).

Indeed, several authors have made pleas for a unified, broad-
scale catchment classification system in hydrology (e.g. [2,16]).
Besides providing a ‘‘common language for discussions’’ [16–18],
catchment classification is a crucial step towards hydrologic
synthesis [2,18] to better understand how the different levels of
catchment complexity vary in space and time [2,6,19]. While all
catchments are unique, they lie in a continuum of hydrological
behaviours as a result of different interactions between climatic
and physical characteristics. The use of catchment classification,
where catchment characteristics are used as measures of similarity
between different sites, can therefore be seen as a learning process
where the particular controls on the hydrologic response of specific
places are confronted with one another before establishing a
tentative hierarchy of them. Classification efforts are not new in
hydrology: we here refer to cases in which catchments are discrim-
inated as humid versus arid, forested versus agricultural, fast versus
slow-responding, groundwater-dominated versus surface-water-
dominated, etc. [16]. The main drawback of these classifications is
however their focus on individual catchment characteristics (i.e.
climate, land use, catchment response, storage, etc.).

To date, no universally accepted metric or combination of
metrics has been identified to quantify catchment similarity from
the triple point of view of forcing, form and function; different
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arguments have been made for what might constitute a useful sim-
ilarity framework. For instance, Buttle [20] has argued that a catch-
ment classification scheme should take into consideration the
catchment typology, topography and topology to describe the par-
titioning of water inputs and their routing through various land-
scape elements to the river network. McDonnell and Woods [2]
recommended classifying measures of fluxes, storages, and re-
sponse timescales to enhance our ability to discriminate between
alternative catchment behaviours. Wagener et al. [16] merged
these ideas to suggest that static characteristics illustrating catch-
ment forcing and structure should be combined with dynamic
catchment response characteristics. In parallel to these hydromet-
ric-based approaches, recent work has also led to catchment clas-
sifications from isotope-based mean transit time (MTT) estimates,
that is estimates of the average time for a water molecule to travel
through a catchment from rainfall to runoff (e.g. [14]). As a result,
the quickly developing field of catchment classification has dealt
with almost as many combinations of indicators to be used as sim-
ilarity metrics as there are papers published on the subject (Ta-
ble 1). It is interesting to note that while all the similarity
metrics reported in Table 1 have a strong physical rationale, the
reasons why some are included in or omitted from some papers
are rarely mentioned, except perhaps for the obvious reason of
availability. Hence, hydrologists have yet to evaluate the impacts
of the chosen similarity indices on catchment classification results.
A few studies have shown that physical catchment characteristics
(e.g., land use, soil types and geology) do not always correlate well
with catchment functional characteristics (e.g., runoff coefficient)
across scale (e.g. [21,22]). These results therefore hint that catch-
ment classification results might be strongly dependent upon the
metrics that we feed into clustering algorithms.

Here we ask the question of whether climatic, topographic,
pedologic and hydrologic similarity metrics lead to convergent
catchment classification results. Here we do not restrict the defini-
tion of hydrologic similarity to runoff metrics but also consider
Table 1
Non-exhaustive overview of climatic, hydrologic, hydro-climatic and physical variables us

Variables

Climatic Daily rainfall statistics
Maximum annual daily precipitation
Long-term mean annual rainfall
Actual or potential evapotranspiration
Ratio of annual precipitation to annual actual or potential e

Hydrologic Mean daily flow and/or flow value exceeded 95% of the tim
Mean annual maximum flood date
Slope of the flow duration curve
Baseflow indices
Long-term ratio of base flow to runoff
Soil Conservation Service (SCS) curve number
Baseflow chemistry or groundwater contributions from hyd
Mean transit times or catchment storage estimates

Hydro-climatic Ratio of mean long-term annual runoff to mean long-term
Rainfall-runoff lag time

Physical Drainage area and/or catchment perimeter
Elevation
Aspect
Catchment slope
Topographic and/or downslope index
Longest flow path length
Distance and/or gradient to stream
Stream length
Stream frequency
Channel slope
Drainage density
Soil cover, vegetation types and/or land use
Geologic and/or hydraulic properties
Area covered by lakes, ponds or wetlands
Soil runoff coefficient
their storage dynamics so that their hydrological behaviour can
be compared over short and longer timescales. Our case study fo-
cuses on 36 catchments spread over seven different geomorphic
provinces of Scotland and for which a whole suite of climatic indi-
ces, topographic properties, soil cover proportions, flow percen-
tiles, streamwater mean transit times and storage estimates are
available. We therefore test various combinations of these catch-
ment characteristics so as to quantify catchment similarity from
a solely structural or ‘‘static’’ point of view (i.e. topographic prop-
erties, soil cover proportions), a solely functional point of view
(i.e. flow percentiles, streamwater mean transit times, storage esti-
mates), or both. Our approach is different from that of previous
catchment classification papers in that we choose to focus only
on 36 long-term experimental sites and wish to use our field
knowledge to assess the plausibility of the anticipated classifica-
tion results. We also take this opportunity to introduce and test a
relatively recent algorithm, affinity propagation [23], specially de-
signed for clustering purposes but not yet exploited in hydrology.
Our dual aim is therefore to investigate the existing or missing cor-
relations between different sets of catchment properties while
exploring the potential of a different clustering algorithm in
hydrology.
2. Study catchments

The 36 study catchments drain areas ranging from 0.44 to
1712.10 km2. They are located in seven different geomorphic prov-
inces of Scotland (Fig. 1(B)) and are characterized by contrasting cli-
mate, topography, geology, soil cover and land use (see Table 2). All
36 sites have already been the subject of process-based hydrological
studies and extensive descriptions of their attributes and behav-
iours can be found elsewhere (e.g. [14,24,25]).

In brief, our dataset accounts for the main West-East precipita-
tion gradient across the Scottish territory; frontal systems from the
ed in previous catchment classification and/or regionalization studies.

Sample publications (bracketed numbers refers to
publications in the reference list)

e.g., [35,14,24]
e.g., [21]
e.g., [10,11,21,36,13,22,15]
e.g., [37,22,15]

vapotranspiration e.g., [13,22]
e e.g., [11,15]

e.g., [35]
e.g., [38]
e.g., [11,13,38]
e.g., [22]
e.g., [22]

rograph separation e.g., [39]
e.g., [14,39,15,24]

annual rainfall e.g., [38]
e.g., [11,35,38]
e.g., [10–12,21,36,13,14,39,15,24]
e.g., [21,22,36,13,14,39,15,24]
e.g., [13]
e.g., [12,37,21,22,39]
e.g., [14,39,24]
e.g., [13,14,24]
e.g., [39]
e.g., [11,22,36]
e.g., [10,11]
e.g., [10,11,22,36]
e.g., [21,22,14,39,24]
e.g., [11,37,36,13,22,14,39,15,24]
e.g., [12,22,15]
e.g., [11,21,36]
e.g., [36]



Fig. 1. Location of (A) the 36 study catchments, and (B) the seven geomorphic provinces in Scotland.
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Atlantic are known to result in annual precipitation exceeding
2000 mm along the West coast whereas less than 1000 mm are re-
corded in the rain shadow to the East. Precipitation is more or less
evenly distributed throughout the year, with higher-magnitude
events usually occurring during the autumn and winter seasons.
Mean annual temperature is mainly controlled by elevation differ-
ences and to a lesser extent by latitude. Elevation gradient are
important as they help distinguish montane catchments (e.g. Coire
nan Con, Loch Dee – Green Burn, Dargall Lane and White Lagan,
Balquhidder – Kirkton, Allt a’Mharcaidh, refer to Fig. 1(A)) from
lowland sites (<300 m in altitude, e.g. Loch Ard – Burn 10 and 11,
Lower Halladale, Cruick). Headwater sites are generally alpine in
character with steeper slopes while lowland regions consist of
more gentle topography with undulating forms and large and flat
valley bottoms. Most sites are dominated by low permeability
igneous and metamorphic rocks which range from granite (e.g.
Green Burn, Dargall Lane, Lower Halladale, Allt a’Mharcaidh),
through to schist and gneiss (e.g. Coire nan Con) and other meta-
morphic rocks (e.g. White Laggan, Balquhidder – Kirkton, Loch
Ard – Burn 10 and 11). Exceptions are the fractured volcanic rocks
(e.g. Sourhope – Rowantree Burn) or sandstones (e.g. Cruick and
other lowland North Esk sites). At most sites, variable assemblages
of drift are superimposed on the solid geology. This ranges from
compacted fine textured basement tills (e.g. Girnock) to freely
draining fluvioglacial deposits (e.g. Allt Chomraig).
Soil cover proportions were extracted from the United Kingdom
Hydrology Of Soil Types (HOST) classification [26] which groups
soils into 29 different classes reflecting dominant runoff processes.
The pedologic characteristics of the 36 catchments studied here re-
flect the dual influence of topography and geology within and
across regions. For example, in valley bottoms and on gentle slopes
where the superficial drifts are fine textured, peats and peaty gley
soils are often present (e.g. Girnock, Feshie Lodge, Lower Halladale,
Coire nan Con, Loch Ard – Burn 10 and 11, see Table 2); they are
referred to as ‘‘highly responsive soils’’ as they are subjected to
poor vertical drainage and remain close to saturation all year long.
On the contrary, areas with steeper slopes or more permeable
drifts are preferential locations for humus-iron Podzols, subalpine
and alluvial soils (e.g. Allt a’Mharcaidh, Balquhidder – Kirkton,
Upper Luther Water, Cruick, Dee at Banchory, see Table 2) and
facilitate groundwater recharge, hence their denomination of
‘‘freely draining soils’’. Rankers (or regosols) also develop on the
steepest mountain slopes. These hydropedological characteristics
can be translated into contrasting dominant runoff generating
flow paths: responsive soils are primarily associated with over-
land flow and shallow lateral subsurface flow whereas freely
draining soils allow deeper subsurface flow and groundwater
recharge to occur. As far as land use is concerned, most catchments
are dominated by heather moorland or montane vegetation.
Catchments with significant forest cover include Coire nan Con,



Table 2
Summary of study catchment characteristics. CV refers to ‘‘coefficient of variation’’. Physical characteristics were derived from DEM analyses while soil coverage proportions were
computed from HOST maps. Flow indices reflect the streamflow dynamics at the outlet of each study catchment. Streamflow mean transit times were estimated by Hrachowitz
et al. [14,24] using Gamma transit time distributions; ‘‘5%’’ and ‘‘95%’’ refer to the 5th and 95th percentiles of the behavioural subsets. Catchment storage values were
approximated by multiplying MTT estimates by mean annual precipitation values.

Min Max Mean Median Std CV

Area (km2) 0.44 1712.10 194.09 49.00 385.31 1.99
Climatic index
Mean annual precipitation (mm) 876.00 3400.00 1543.70 1256.00 714.58 0.46

Terrain characteristics
Minimum elevation (m) 18.00 518.00 205.06 224.90 128.69 0.63
Maximum elevation (m) 220.00 1305.00 864.94 851.50 326.38 0.38
Mean elevation (m) 143.00 865.00 464.95 452.50 178.37 0.38
Maximum slope (deg) 25.80 78.30 51.94 50.10 16.42 0.32
Mean slope (deg) 4.00 19.00 10.74 10.90 3.45 0.32
Drainage density (km/km2) 0.65 3.88 2.14 2.35 1.01 0.47
Mean flow path length (km) 1.41 128.99 23.04 12.86 29.96 1.30
Median topographic index (ln(m)) 5.10 7.80 6.51 6.46 0.74 0.11

Soil coverage proportions (decimal fractions)
Alluvial soils 0.00 0.11 0.02 0.00 0.03 1.40
Humus-iron Podzols; subalpine soils 0.00 0.74 0.18 0.12 0.19 1.06
Brown forest soils 0.00 0.65 0.04 0.00 0.14 3.82
Rankers 0.00 0.82 0.14 0.02 0.21 1.48
Peaty Podzols and peaty gleys 0.00 1.00 0.38 0.32 0.28 0.73
Peat 0.00 0.66 0.21 0.12 0.21 1.00
Eroded peat 0.00 0.31 0.02 0.00 0.06 3.75
Gleysols 0.00 0.09 0.01 0.00 0.02 2.17
Open water 0.00 0.02 0.00 0.00 0.00 3.18
Freely draining soils 0.00 0.78 0.30 0.28 0.24 0.80
Responsive soils 0.22 1.00 0.70 0.72 0.24 0.35

Flow indices
Mean daily discharge (l s�1 km�2) 10.42 99.39 37.69 31.39 21.83 0.58
Q95 (exceeded 95% of time) (l s�1 km�2) 1.49 10.15 5.84 6.14 2.37 0.41
Q5 (exceeded 5% of time) (l s�1 km�2) 43.98 381.65 131.49 99.00 86.84 0.66
Mean annual flow (sum, mm) 478.00 2974.00 1159.90 975.50 601.90 0.52

MTT (mean transit time) indices
Median MTT (days) 61.00 2285.00 811.42 662.00 640.32 0.79
MTT, 5% (days) 12.00 1172.00 406.17 354.00 301.18 0.74
MTT, 95% (days) 117.00 3866.00 1247.80 992.00 1029.90 0.83

Storage indices
Median storage (mm) 300.00 5787.00 1953.80 1699.00 1222.00 0.63
Median storage, 5% (mm) 72.00 2652.00 1003.30 896.50 596.55 0.59
Median storage, 95% (mm) 491.00 8808.00 3039.50 2517.00 1970.80 0.65
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Balquhidder – Kirkton, Allt a’Mharcaidh, and the Loch Dee and
Loch Ard sites. Lowland areas are often used for arable agriculture
and pasture. Very limited anthropogenic influences can be ob-
served; the largest settlement in all our 36 catchments is Banchory
with a population of ca. 6000 inhabitants.

Mean daily discharges among all 36 sites range from 10.42 l s�1

km�2 to 99.39 l s�1 km�2 (Table 2). Nonparametric Spearman rank
correlation coefficients between the median MTT and the mean dai-
ly discharge and between the median MTT and Q5 are, respectively,
rSpearman = �0.75 (p-value < 0.0001) and rSpearman = �0.68 (p-va-
lue < 0.0001). This shows that in catchments with the longest
streamwater mean transit times, the damped hydrograph responses
are perceptible through the lower values of the mean daily flow and
the flow levels that are exceeded 5% of the time (Table 2). Transit
time estimates range from about two months to five or six years (Ta-
ble 2): shorter ones are encountered in the Coire con Nan, Loch Ard
(Burn 10 and 11), Lower Halladale and the Loch Dee (Green Burn,
Dargall Lane and White Lagan) while longer ones are present in
the North Esk sub-catchment and at Sourhope (Rowantree).
3. Classifying catchments using affinity propagation

Affinity propagation (AP) was introduced by Frey and Dueck
[23] in the field of computer science and is becoming increasingly
popular in physical sciences as a powerful clustering tool. It is dif-
ferent from standard clustering algorithms as it has the double aim
of (i) partitioning the objects of a dataset into groups of apparently
similar objects, and (ii) identifying, for each group, a single object
or ‘‘exemplar’’ that is the most representative of that group. The
AP algorithm has the ability of ‘‘greatly compressing a potentially
massive dataset very efficiently while identifying and retaining its
most representative elements’’ ([27], p. 2). The rationale behind AP
is different from standard clustering methods as the algorithm
does not need the number of clusters to be specified by the end-
user prior to the classification. Each object in a dataset is consid-
ered as a node in a network; real-value messages are recursively
transmitted along the edges of the network until a good set of
exemplars gradually emerges. At each iteration, the magnitude of
each message reflects the current affinity that one object has for
choosing another object as its exemplar, hence the term ‘‘affinity
propagation’’ [23].

Full algorithmic details for AP can be found in [23]. For the pur-
pose of this paper, objects are in fact catchments with various com-
binations of attributes. As input to the algorithm, a square
similarity matrix s is used:

s ¼ �d2 ð1Þ

where d is an Euclidean distance matrix computed from data vec-
tors. Each object must be supplied with a preference value that
specifies a priori how likely each of them is to become an exemplar.
When no prior knowledge is available and all objects are considered
to be equally suitable as exemplars, as is the case with our dataset,



Table 3
Combinations of catchment properties used for different classification runs. Refer to Table 2 for detailed information about each property or group of properties. The ‘‘level of
complexity’’ varies from 1 to 3 and refers to whether the dataset used for the classification includes only one type of information (e.g. topographic or pedologic or flow data) or
rather multiple types of information.

Combination name Properties included

Area Climatic index Terrain properties Soil coverage proportions Flow indices MTT indices Storage indices Complexity level

CLIMATIC
p

1
TOPOGRAPHIC

p
1

SOIL
p

1
FLOW

p
1

MTT
p

1
STORAGE

p
1

PHYSICALwithAREA
p p

2
PHYSICALwithoutAREA

p p p
2

HYDROLOGIC
p p p

2
ALLwithAREA

p p p p p p p
3

ALLwithoutAREA
p p p p p p

3
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the preference values are set to the median of the input similarities
[23], thus allowing the clustering procedure to ‘‘learn’’ the appropri-
ate number of exemplars (and clusters) from the data. Upon publi-
cation of their paper, Frey and Dueck released a MATLAB
(Mathworks, Inc.) code for affinity propagation which was later
adapted for use in R [28]. The resulting R package, apcluster [29],
was used for our analyses.

In our application, we applied the AP algorithm using different
combinations of catchment characteristics as similarity metrics,
and later we compared the classification results obtained. Table 2
shows the suite of characteristics which were compiled for each
catchment while Table 3 shows the different combinations of
catchment properties used as similarity metrics and fed into the
AP algorithm. It should be noted here that in order to be consistent
with the objective of comparing ‘‘purely structural’’ and ‘‘purely
functional’’ similarity metrics, it would have been preferable to
use non-processed soil data, namely information on soil cover
which had not be transformed and/or interpreted in light of dom-
inant runoff processes as is the case with HOST maps. Unfortu-
nately the HOST data were the only soil-related information
available. While the 29 HOST classes are assumed to reflect domi-
nant runoff processes, the conceptual models of runoff generation
on which they rely are very simplistic. Hence, as a secondary re-
search objective, we also wish to test whether relative proportions
of HOST classes are correlated with traditional indicators of catch-
ment behaviour or catchment response such as flow percentiles or
transit time estimates. Each combination of catchment properties
was also assigned a level of complexity (Table 3). These levels of
complexity ranged from 1 to 3 to reflect the different data types in-
cluded in each combination. For example, the ‘‘TOPOGRAPHIC’’
combination included terrain characteristics only, hence its com-
plexity level of 1, while the ‘‘PHYSICALwithoutAREA’’ combination
incorporated terrain characteristics and soil cover proportions
(complexity level of 2) and the ‘‘ALLwithAREA’’ combination (com-
plexity level of 3) covered all variables listed in Table 2. In total, 11
different classification runs were achieved using the 11 different
combinations of variables reported in Table 3.

Classification results were examined in several ways:
� We mapped the AP results by showing the partitioning of the

catchments into different groups and the location of catchment
exemplars. In addition to the maps, the regional dependence of
the identified groups was also investigated. Cramér’s V [30] mea-
sure of association was used to assess whether each cluster was
self-contained into a given geomorphic province. Cramér’s V is a
numerical index that describes the strength of the relationship
between two nominal variables, in our case the names of the
seven geomorphic provinces of Scotland (Fig. 1(B)) and the clus-
ter memberships in a given classification run. Cramér’s V comes
from contingency table analysis and is computed by taking the
square root of the chi-square statistic v2 divided by the sample
size N and the length of the minimum dimension of the crosstab K:
Cram�er’s V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

NðK � 1Þ

s
ð2Þ

K is the smallest of the number of rows or columns in the contin-
gency table. Cramér’s V values lie between 0 and 1, with a min-
imum value of zero indicating that the groups show no regional
dependence and a maximum value of one rather indicating that
the groups are strongly associated with one of the seven geo-
morphic provinces. For simplification purposes, we qualitatively
assessed the regional dependence of groups as null, mediocre,
moderate or strong when Cramér’s V values were less than 0.3,
between 0.3 and 0.5, between 0.5 and 0.7, and above 0.7
respectively.
� We built cluster plots to compare the individual characteristics

of different clusters in a given classification run. Each cluster
was defined by its catchment exemplar and associated with a
qualitative label. These qualitative labels (e.g. low, moderately
low, moderate, moderately high, and high) were defined using
the 10th, 25th, 50th and 75th percentile values of each catch-
ment characteristic.
� We defined an exemplar propensity function to quantify the

propensity of each catchment to become a group exemplar in
one or many of the 11 classification runs. The exemplar propen-
sity function was defined as follows:
Pk i¼
P11

nclassifruns¼1Exemplaritynclassifruns�ComplexityLevelnclassifrunsP11
nclassifruns¼1ComplexityLevelnclassifruns

ð3Þ

where Pk i is the propensity of catchment i to be an exemplar
k across all classification runs, Exemplaritynclassifruns is a binary
index (1 or 0) indicating whether or not catchment i is an
exemplar k in the classification run nclassifruns, and
ComplexityLevelnclassifruns is the complexity level associated with
the combination of catchment properties used in the current
classification run. The exemplar propensity Pk i therefore varies
between 0 and 1 and gives a greater importance to catchments
which tend to become exemplars when higher complexity
datasets are used for the classification.
� We employed the Adjusted Rand Index (ARI, see [31] for details)

to determine whether ‘‘physically similar’’ catchments were
also ‘‘hydrologically similar’’. The standard Rand Index mea-
sures the agreement between two classifications C1 and C2
using the following formula:
Rand Index ¼ aþ b
aþ bþ c þ d

ð4Þ



Table 4
Number of groups determined using the traditional AP algorithm (negative squared
Euclidean distance matrix and preferences set to the median of input similarities, see
details in text). The regional dependence of identified groups is also assessed via
Cramér’s V measure of association (i.e. association between the spatial spread of the
group members and the seven Scottish physiographic regions investigated).

Combination of catchment properties Number of groups Cramér’s V

CLIMATIC 6 Strong
TOPOGRAPHIC 6 Moderate
SOIL 8 Moderate
FLOW 8 Moderate
MTT 5 Strong
STORAGE 6 Strong
PHYSICALwithAREA 6 Strong
PHYSICALwithoutAREA 6 Strong
HYDROLOGIC 9 Moderate
ALLwithAREA 8 Strong
ALLwithoutAREA 8 Strong
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where a is the number of catchment pairs that are in the same
group in classification C1 and in the same group in classification
C2; b is the number of catchment pairs that are in different
groups in C1 and in different groups in C2; c is the number of
catchment pairs that are in the same group in C1 but in different
groups in C2; and d is the number of catchment pairs that are in
different groups in C1 but in the same group in C2.

The adjusted form of the Rand Index simply corrects the for-
mula for chance, taking into account the fact that randomness
may cause some catchments to pertain to the same group:
Fig. 2. Classification results according to the TOPOGRAPHIC and SOIL combinations of va
with a grey-shaded circle. Note that while symbols are re-used in panels (A) and (B), th
Adjusted Rand Index¼

N

2

� �
ðaþdÞ�½ðaþbÞðaþcÞþðcþdÞþðbþdÞ�

N

2

� �2

�½ðaþbÞðaþcÞþðcþdÞþðbþdÞ�
ð5Þ

where N
2

��
is the total number of possible combinations of

pairs. The closer the ARI is to one, the better the agreement be-
tween the two classifications C1 and C2.
4. Results

4.1. Group patterns

The differences in group patterns and exemplar locations were
highly dependent upon the combination of catchment properties
fed into the AP algorithm. Table 4 shows that most combinations
of catchment properties led to classifications with 6 or 8 different
groups. The ‘‘HYDROLOGIC’’ classification resulted in the highest
number of groups (i.e. 9) while the ‘‘MTT’’ classification gave the
lowest number of clusters (i.e. 5) and the ‘‘FLOW’’ classification
was associated with 8 catchment groups. This suggests that indica-
tors of short-term hydrologic functioning were highly heteroge-
neous between catchments while MTT estimates effectively
dampened this variability and presented a more uniform clustering
across many sites. According to the values of Cramér’s V, it was as-
sessed that all classifications but those based on the ‘‘FLOW’’,
‘‘SOIL’’, ‘‘TOPOGRAPHIC’’ and ‘‘HYDROLOGIC’’ combinations of
riables. Each black symbol illustrates a different group. Group exemplars are flagged
ey do not identify the same groups.



Fig. 3. Classification results according to the FLOW and MTT combinations of variables. Symbology is the same as in Fig. 2.
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catchment characteristics showed relatively strong patterns of re-
gional dependence (Table 4). This is supported by the group
mappings shown in Figs. 2–5. Indeed, some groups associated with
the ‘‘MTT’’ and the ‘‘HYDROLOGIC’’ classifications were very self-
contained within the limits of a geomorphic province (e.g. square
symbols are exclusively located in the North Esk region in Figs.
4(B) and 5(B)). On the other hand, the spatial dependence was
moderate with the ‘‘FLOW’’ classification as some groups clearly
spanned over multiple geomorphic provinces (e.g. upward-point-
ing triangles in Fig. 3(A)). It should be noted that the classification
map associated with the ‘‘TOPOGRAPHIC’’ combination of variables
(Fig. 2(A)) was the only one where no exemplar sites were selected
within the North Esk region. Also, when looking at the Dee and Fes-
hie catchments, the most Eastern, lowland sites were never identi-
fied as exemplars except in the ‘‘FLOW’’ classification.

For some combinations of variables with a complexity level of 1
(refer to Table 3), it was possible to discern patterns among the de-
fined groups. For instance, when considering the ‘‘TOPOGRAPHIC’’
classification, the mean elevation values associated with the exem-
plar catchments were strongly correlated with mean slope values
(Spearman rank correlation coefficient: q = �0.83, 5% statistical
significance level) and mean flow path length values (q = �0.88),
thus meaning that we could observe consistent ‘‘lower to higher
elevation’’, ‘‘higher to lower slope’’ and ‘‘shorter to longer flow path
lengths’’ patterns. Similarly, when considering the ‘‘SOIL’’ classifi-
cation, some sites showed a strong association between alluvial
soils and humus-iron podzols (q = �0.88) while some others were
characterized by high proportions of rankers and gleysols
(q = �0.79). When aggregating properties and considering dataset
complexity levels of 2 and 3, however, patterns were more difficult
to discern and rather complex. With the ‘‘PHYSICALwithAREA’’
classification, gradients in mean elevation and proportion of
responsive soils could be perceived but they were associated with
complex group patterns when it came to drainage area, mean an-
nual precipitation, mean slope and mean flow path length. Such
was also the case with the ‘‘HYDROLOGIC’’ and the ‘‘ALLwithAREA’’
classifications. As an example, Fig. 6 highlights some individual
characteristics of the 8 catchments exemplars in the ‘‘ALLwithAR-
EA’’ classification. This figure shows that the three groups with
the highest mean daily discharges (i.e. cross, asterisk and right-
pointing triangle symbols) were also associated with the largest
levels of mean annual precipitation, moderately low MTT values
and moderately high to high proportions of responsive soil cover.
The three groups with the longest MTT values (i.e. diamond,
square and upward-pointing triangle symbols) were however
associated to both lowland (i.e. square and upward-pointing
triangle symbols) and upland (i.e. diamond symbol) sites, gently
sloping (i.e. square and upward-pointing triangle symbols) and
steep (i.e. diamond symbol) topographies, and moderate (i.e.
diamond symbol) and high proportions (i.e. square and upward-
pointing triangle symbols) of responsive soil cover, thus making
the identification of dominant physical controls on hydrologic
functioning difficult and the group patterns somehow
unpredictable.



Fig. 4. Classification results according to the PHYSICALwithAREA and HYDROLOGIC combinations of variables. Symbology is the same as in Fig. 2.

Fig. 5. Classification results according to the ALLwithAREA combination of variables. Symbology is the same as in Fig. 2.
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4.2. Comparison of similarities

The quantification of the agreement between the different
classification runs revealed that these physically and climatically
similar Scottish catchments were not necessarily hydrologically
similar. Adjusted Rand Index (ARI) values reported in Table 5 show
that in general, there was a very weak agreement between
classifications based on physical catchment characteristics (e.g.
‘‘CLIMATIC’’, ‘‘TOPOGRAPHIC’’, ‘‘SOIL’’ combinations of variables)
and classifications based on proxies for hydrological behaviour
(e.g. ‘‘FLOW’’, ‘‘MTT’’, ‘‘STORAGE’’ combinations of variables). The
‘‘PHYSICALwithAREA’’ classification shared an ARI value of only 0.28
with the ‘‘HYDROLOGIC’’ classification,0.24 with the ‘‘MTT’’ classifica-
tion and 0.16 with the ‘‘FLOW’’ classification (Table 5). The
comparison of the ‘‘ALLwithAREA’’ and the ‘‘ALLwithoutAREA’’
classifications, as well as the comparison of the ‘‘PHYSICALwithAREA’’



Fig. 6. Cluster plot showing the main characteristics of individual groups following the ‘‘ALLwithAREA’’ classification run. Symbols used to identify groups are the same as in
Fig. 5(C). Each group is defined by its exemplar and associated with a qualitative label (e.g. low to high) defined using the 10th, 25th, 50th and 75th percentile values of each
characteristic. As an example of how to read this diagram, upward-pointing triangles are flagged with a grey-shaded circle. It can be observed that catchments represented by
these triangles in Fig. 5(C) are usually characterized by low values of mean annual precipitation, mean elevation and mean daily discharge, moderately small slopes, moderate
flow path lengths, high proportions of responsive soil, and high values of MTT and storage.

Table 5
Agreement between the different classification runs assessed using the Adjusted Rand Index (ARI). The closer to 1 the value of the ARI is, the better the agreement between two
classification runs. As an example, the shaded area illustrates the comparison between the ‘‘ALLwithAREA’’ and the ‘‘ALLwithoutAREA’’ classifications with an ARI value of 0.9.
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and the ‘‘PHYSICALwithoutAREA’’ classifications yielded high ARI
values of 0.90 and 0.85 respectively, thus suggesting that the
catchment drainage area does not have a significant influence on
the way the classification groups were defined during AP.

The ‘‘ALLwithAREA’’ combination of properties allowed us to
assess overall catchment similarity rather than focusing on physical
(i.e. structural) or hydrological (i.e. functional) aspects in isolation.
Both the 8 groups and the 8 exemplar catchments that best
represented each group can be seen as the most representative yet
distinct models of catchment dynamics that can be found amongst
our 36 study sites. In the absence of overlapping results between
the different classification runs, however, one may ask what replace-
ment data might be used to approximate the ‘‘ALLwithAREA’’
similarity patterns when all the characteristics listed in Table 2 are
not available. Table 5 shows that the two best compromises with
that regards would be the ‘‘PHYSICALwithoutAREA’’ and the ‘‘MTT’’
classifications which shared ARI values of 0.55 and 0.44, respec-
tively, with the ‘‘ALLwithAREA’’ grouping results. The ARI value
between the ‘‘ALLwithAREA’’ and the ‘‘FLOW’’ classifications was
only 0.24, thus highlighting the fact that streamflow characteristics
alone could not approximate the interactions between physical and
hydrological characteristics in the catchments studied.



Fig. 7. (A) Catchments endorsing the role of group exemplars in each classification run. Dot colours from light grey to black show datasets with increasing levels of
complexity (refer to Table 3). (B) Value of the exemplar propensity function for each catchment. Refer to Fig. 1 for the location of the study sites.
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The exemplar propensity function previously defined in Sec-
tion 3 was also useful as it revealed that the suitability of a gi-
ven site to become the ambassador of a group was highly
dependent upon the data fed into the AP algorithm. Fig. 7 shows
that catchments such as the Dee at Banchory, Girnock and Loch
Ard – Burn 11 tended to be group exemplars only in the classi-
fications involving combinations of characteristics with a com-
plexity level of 1. When datasets with complexity levels of 2
or 3 were used, however, very few catchments consistently en-
dorsed the role of group exemplars except for Brocky Burn, Pol-
hollick, Eidart, Upper Luther Water, West Water and Loch Dee –
White Laggan. This observation adds to the evidence that many
‘‘catchment similarities’’ exist and classification exercises should
be undertaken with caution when different types of catchment
characteristics are not available.
5. Discussion

5.1. On the equivalence of catchment similarity indices

Our AP-based classification exercise showed the usefulness of
the chosen similarity metrics for the resulting groupings. By com-
paring various combinations of catchment characteristics so as to
quantify catchment similarity, we sought to test the hypothesis
that classifications based on low-complexity combinations of vari-
ables would be significantly different to the groupings obtained
using higher-complexity datasets. Figs. 2–5 together with Tables
4 and 5 support this hypothesis and thus highlight the lack of cor-
relation between physical (i.e. forcing and form) and hydrologic
(i.e. function) similarity indices. While looking for the best com-
promises to approximate the ‘‘ALLwithAREA’’ grouping results,
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the ‘‘PHYSICALwithoutAREA’’ combination of catchment properties
was ranked first, followed by the ‘‘MTT’’ dataset. The way these
two alternatives were ranked is especially interesting as it reveals
the first-order control of catchment physical attributes and the
usefulness of MTT estimates as a proxy of hydrological behaviour,
especially in terms of inferring the dynamics of water storage and
release.

It is surprising that no combinations of forcing and form indica-
tors (i.e. ‘‘PHYSICALwithAREA’’) tested in this paper correlated well
with the streamflow characteristics (Q95, Q5 and mean daily dis-
charge). While previous catchment classification studies have re-
lied on streamflow indicators (Table 1) our results suggest that
the choice of relevant similarity metrics may be region- or con-
text-dependent, at least for our 36 sites. It is likely that flow regime
properties are useful to characterize the quickly-responding catch-
ments in which near-surface flow paths are often activated; flow
properties appear to be less useful for more groundwater-domi-
nated catchments in which deeper mixing processes occur. These
dual dynamics are captured well by streamwater transit time dis-
tributions, and this might explain why MTT estimates performed
better as catchment functioning surrogates in our analyses. The
fact that streamflow-derived indices were not well correlated with
catchment physical properties in our analyses might also be linked
to differences in landscape evolution histories among our study
catchments. The landscape of many parts of the Scottish Highlands
reflects the ancient geological history and the effects of selective
glacial erosion. Thus, the relatively short post-glacial period means
that recent hydrological and fluvial processes have had a secondary
influence on catchment characteristics such as the presence of
wide and deep valleys. Also, relict paraglacial features influence
the distribution of wetlands and zones of internal drainage [32]
which can be topographically isolated from the drainage network.
Runoff generated on these areas might therefore not reach the
stream or does so only via deeper groundwater pathways. Thus,
in ancient glaciated landscapes such as Scotland, it is the combina-
tion of complex drift distributions and topography together that
determines soil hydrology, hence the importance of MTTs. In re-
gions where limited topographic variations and relatively uniform
soils are encountered, however, it is rather the topology of land-
scape features adjacent to the river channel network which are
strong hydrological determinants [20].

5.2. On the potential of affinity propagation for catchment
classification

In light of the analyses reported in this paper, we believe that
the AP algorithm has some potential for catchment classification
as it is highly computationally efficient, and has the advantage of
determining ‘‘on its own’’ the optimal degree of partitioning (num-
ber of groups) needed for a specific dataset. This later aspect could
be interesting from a process understanding point of view as we
believe that the optimal number of groups determined by AP could
be interpreted as the different levels of catchment organizing prin-
ciples along a given continuum. The AP algorithm allows one to go
further than the simple definition of catchment classes by helping
one identify ‘‘benchmark’’ or ‘‘exemplar’’ sites and contextualizing
existing ‘‘iconic’’ sites that are implicitly assumed to be more gen-
erally representative. Mézard [33] notes that ‘‘detecting exemplars
goes beyond simple clustering, as the exemplars themselves store com-
pressed information’’ (p. 949). The identification of such exemplars
could be helpful in rationalizing sampling efforts in hydrology,
especially as it is possible to modify the AP algorithm so that it
can differentiate outliers from exemplars [34]. This small distinc-
tion might be useful when dealing with very large datasets, namely
datasets larger than the one we relied on in this paper. However,
exemplars do not help understand what the response of a
particular catchment might be if it lies at the boundary between
two classification groups. With that regards, the AP algorithm is
very similar to other NP-hard clustering methods where each
object is assigned to a unique group even though it might seems
more sensible for each object to pertain to different groups with
different degrees of membership (e.g., fuzzy clustering).

While beyond the scope of the present paper, we briefly eval-
uated the sensitivity of the classification results to the distance
matrix and the preference value used (data not shown). In addi-
tion to the negative squared Euclidean distance matrix (common
rule), other distance matrices were also tested (i.e. maximum,
Manhattan, Canberra, Minkowski (p = 3), radial basis function
(Gaussian) kernel and Laplace kernel). We observed that for data-
sets with a complexity level of 1, all distance matrices, except
Canberra and Minkowski, led to similar classifications. For data-
sets with complexity levels of 2 and 3, the agreement between
classifications using different distance matrices was usually poor.
The chosen distance matrix was then highly important as it con-
trolled not only the number of groups but also the catchments
that would likely be chosen as group exemplars. We also ran
the algorithm by setting the preference value to the minimum,
rather than the median, of input similarities and this caused the
number of groups in all classifications to be consistently equal
to or higher than the number obtained while using the median
of input similarities. Hence, even though the AP algorithm has
clear advantages, it does share some of the same drawbacks as
common clustering methods when it comes to the results depen-
dency on the chosen distance matrix.
6. Conclusion

This paper aimed at comparing a range of similarity indices for
catchment classification using a cross-regional dataset. Our focus
was on 36 catchments, some of them partly nested, ranging in
size and spread over seven different geomorphic provinces of
Scotland. We fed a relatively new clustering algorithm called
affinity propagation with various combinations of catchment
characteristics to assess whether climatic, topographic, pedologic
and hydrologic similarity indices lead to convergent catchment
classification results. Affinity propagation provided an objective
means to quantify the optimal number of groups needed to cap-
ture the most variability within our dataset. This application also
allowed us to identify exemplar catchments that were the most
representative of their respective groups. While the idea of exem-
plars is quite popular in other sciences (e.g., [33]), further work
might be needed before we can assess the usefulness of such
exemplars towards catchment process understanding and hydro-
logic synthesis. Our results showed that neighbouring catchments
were usually but not always more similar than distant catch-
ments. Also, catchment groupings obtained on the basis of topo-
graphic properties did not always match those obtained using
flow indices, mean transit times or storage estimates. The lack
of correlation between flow-derived and physical similarity indi-
ces was particularly surprising as such indices have been used
indifferently in previous catchment classification studies. While
we do not claim that such a conclusion would hold in another
environment, we hypothesize that for our Scottish regional
context, the combination of data which best approximates the
complex interactions between catchment structural and func-
tional properties only included topographic characteristics, soil
properties and mean transit time (MTT) estimates. We therefore
conclude that while there have been calls for a unified, broad-
scale classification framework, our results seem to imply that
the choice of relevant catchment similarity metrics should be re-
gion- or context-dependent.



22 G. Ali et al. / Advances in Water Resources 40 (2012) 11–22
Acknowledgements

The contributions of many organisations and individuals to the
data sources synthesised in this paper are gladly acknowledged.
We are particularly grateful to staff at SEPA for river flow data,
the James Hutton Institute for soils data, Iain Malcolm at Marine
Scotland, and Mark Speed at the University of Aberdeen for tracer
data. Markus Hrachowitz (Delft Technical University) carried out
GIS analysis and transit time estimates for many sites when work-
ing on the Leverhulme project. F/00 152/U: Water Movement in
Large River Basins.
References

[1] McDonnell JJ, Sivapalan M, Vaché K, Dunn S, Grant G, Haggerty R, et al. Moving
beyond heterogeneity and process complexity: a new vision for watershed
hydrology. Water Resour Res 2007;43:W07301. doi:10.1029/2006WR005467.

[2] McDonnell JJ, Woods R. On the need for catchment classification. J Hydrol
2004;299:2–3.

[3] Beven KJ. Uniqueness of place and process representations in hydrological
modelling. Hydrol Earth Syst Sci 2000;4:203–13.

[4] Poor CJ, McDonnell JJ, Bolte J. Testing the hydrological landscape unit
classification system and other terrain analysis measures for predicting low-
flow nitrate and chloride in watersheds. Environ Manage 2008;42:877–93.

[5] Dooge JCI. Looking for hydrologic laws. Water Resour Res 1986;22:S46–58.
[6] Sivapalan M. Pattern, process and function: elements of a unified theory of

hydrology at the catchment scale. In: Anderson MG, editor. Encyclopedia of
hydrological sciences. Chichester, UK: John Wiley & Sons; 2005. p. 193–220.

[7] Milne G. Some suggested units of classification and mapping, particularly for
East African soils. Soil Res 1935;4:183–98.

[8] Horton RE. Erosional development of streams and their drainage basins:
hydro-physical approach to quantitative morphology. Geol Soc Am Bull
1945;56:275–370.

[9] Beven KJ, Kirkby MJ. A physically based variable contributive area model of
basin hydrology. Hydrol Sci Bull 1979;24:43–69.

[10] Acreman MC, Sinclair CD. Classification of drainage basins according to their
physical characteristics: an application for flood frequency analysis in
Scotland. J Hydrol 1986;84:365–80.

[11] Burn DH, Boorman DB. Catchment classification applied to the estimation of
hydrological parameters at ungauged catchments. IH Report No. 118, Institute
of Hydrology, Wallingford; 1992.

[12] Winter TC. The concept of hydrologic landscapes. J Am Water Resour Assoc
2001;37:335–49.

[13] Yadav M, Wagener T, Gupta H. Regionalization of constraints on expected
watershed response. Adv Water Resour 2007;30:1756–74.

[14] Hrachowitz M, Soulsby C, Tetzlaff D, Dawson JJC, Malcolm IA. Regionalization
of transit time estimates in montane catchments by integrating landscape
controls. Water Resour Res 2009;45:W05421. doi:10.1029/2008WR007496.

[15] Carey SK, Tetzlaff D, Seibert J, Soulsby C, Buttle J, Laudon H, et al. Inter-
comparison of hydro-climatic regimes across northern catchments:
synchronicity, resistance and resilience. Hydrol Proc 2010;24:3591–602.

[16] Wagener T, Sivapalan M, Troch P, Woods R. Catchment classification and
hydrologic similarity. Geog Compass 2007;1:901–31.
[17] Sivapalan M, Takeuchi K, Franks SW, Gupta VK, Karambiri H, Lakshmi V, et al.
IAHS decade on predictions in ungauged basins (PUB), 2003–2012: shaping an
exciting future for the hydrological sciences. Hydrol Sci J 2003;48:857–80.

[18] Sivakumar B. Dominant processes concept, model simplification and
classification framework in catchment hydrology. Stoch Environ Res Risk
Assess 2008;22:737–48.

[19] Schröder B. Pattern, process, and function in landscape ecology and catchment
hydrology – how can quantitative landscape ecology support predictions in
ungauged basins? Hydrol Earth Syst Sci 2006;10:967–79.

[20] Buttle JM. Mapping first-order controls on streamflow from drainage basins:
the T3 template. Hydrol Proc 2006;20:3415–22. doi:10.1002/hyp.6519.

[21] Merz R, Blöschl G. Flood frequency regionalisation – spatial proximity vs.
catchment attributes. J Hydrol 2005;302:283–306.

[22] Merz R, Blöschl G. A regional analysis of event runoff coefficients with respect
to climate and catchment characteristics in Austria. Water Resour Res
2009;45:W01405. doi:10.1029/2008WR007163.

[23] Frey BJ, Dueck D. Clustering by passing messages between data points. Science
2007;315:372–6.

[24] Hrachowitz M, Soulsby C, Tetzlaff D, Speed M. Catchment transit times and
landscape controls-does scale matter? Hydrol Proc 2010;24:117–25.

[25] Capell R, Tetzlaff D, Soulsby C, Hartley AL. Linking metrics of hydrological
function and transit times to landscape controls in a heterogeneous mesoscale
catchment. Hydrol Proc 2011. doi:10.1002/hyp.8139.

[26] Boorman DB, Hollis JM, Lilly A. Hydrology of soil types: a hydrological
classification of the soils of the United Kingdom. Institute of Hydrology Report
126, Institute of Hydrology, Wallingford, UK; 1995.

[27] Cardille JA, Lambois M. From the redwood forest to the Gulf Stream waters:
human signature nearly ubiquitous in representative US landscapes. Front Ecol
Environ 2010;8:130–4. doi:10.1890/080132.

[28] R Development Core Team.: R. A language and environment for statistical
computing. Dissertation, R Foundation for Statistical Computing, Vienna,
Austria. ISBN: 3-900051-07-0. <http://www.R-project.org/:2010>.

[29] Bodenhofer U, Kothmeier A. An R package for affinity propagation clustering. R
package version 1.0.3. Dissertation, Institute of Bioinformatics, Johannes
Kepler University, Linz, Austria; 2010.

[30] Cramér H. Mathematical methods of statistics. Princeton: Princeton University
Press; 1946.

[31] Hubert L, Arabie P. Comparing partitions. J Classif 1985;2:193–218.
[32] Gordon J, Wignall P. Geology and geomorphology. In: Shaw J, Thompson D,

editors. The cairngorms. Edinburgh: Scottish Natural Heritage; 2006. p. 13–43.
[33] Mézard M. Where are the exemplars? Science 2007;315:949–51.
[34] Thavikulwat P. Affinity propagation: a clustering algorithm for computer-

assisted business simulations and experimental exercises. Develop Bus Simul
Exp Learn 2008;5:220–4.

[35] Castellarin A, Burn DH, Brath A. Assessing the effectiveness of hydrological
similarity measures for flood frequency analysis. J Hydrol 2001;241:270–85.

[36] Rao AR, Srinivas VV. Regionalization of watersheds by fuzzy cluster analysis. J
Hydrol 2006;318:57–79.

[37] Wolock DM, Winter TC, McMahon G. Delineation and evaluation of
hydrologic-landscape regions in the United States using geographic
information system tools and multivariate statistical analyses. Environ
Manage 2004;34:71–88.

[38] Oudin L, Kay A, Andréassian V, Perrin C. Are seemingly physically similar
catchments truly hydrologically similar? Water Resour Res 2010;46:W11558.
doi:10.1029/2009WR008887.

[39] Tetzlaff D, Seibert J, Soulsby C. Inter-catchment comparison to assess the
influence of topography and soils on catchment transit times in a geomorphic
province; the cairngorm mountains. Scotland Hydrol Proc 2009;23:1874–86.

http://dx.doi.org/10.1029/2006WR005467
http://dx.doi.org/10.1029/2008WR007496
http://dx.doi.org/10.1002/hyp.6519
http://dx.doi.org/10.1029/2008WR007163
http://dx.doi.org/10.1002/hyp.8139
http://dx.doi.org/10.1890/080132
http://www.R-project.org/:2010
http://dx.doi.org/10.1029/2009WR008887

	A comparison of similarity indices for catchment classification using  a cross-regional dataset
	1 Introduction
	2 Study catchments
	3 Classifying catchments using affinity propagation
	4 Results
	4.1 Group patterns
	4.2 Comparison of similarities

	5 Discussion
	5.1 On the equivalence of catchment similarity indices
	5.2 On the potential of affinity propagation for catchment classification

	6 Conclusion
	Acknowledgements
	References


